avatar
fireworks99
keep hungry keep foolish

离散化 线段树 HDU 5124

关于离散化

离散化是什么:一些数字,他们的范围很大(0-1e9),但是个数不算多(1-1e5),并且这些数本身的数字大小不重要,重要的是这些数字之间的相对大小(比如说某个数字是这些数字中的第几小,而与这个数字本身大小没有关系,要的是相对大小)(6 8 9 4 离散化后即为 2 3 4 1)(要理解相对大小的意思)(6在这4个数字中排第二小,那么就把6离散化成2,与数字6本身没有关系, 8,9,4亦是如此)

我个人觉得“离散化”根据其功能明明应该命名为“聚敛化”

更多关于离散化 https://blog.csdn.net/xiangaccepted/article/details/73276826

Description

John has several lines. The lines are covered on the X axis. Let A is a point which is covered by the most lines. John wants to know how many lines cover A.

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5124

Input

The first line contains a single integer (the data for less than 11 cases),indicating the number of test cases.
Each test case begins with an integer ,indicating the number of lines.Next N lines contains two integers and ,describing a line.

Output

For each case, output an integer means how many lines cover A.

Sample Input

2 5 1 2 2 2 2 4 3 4 5 1000 5 1 1 2 2 3 3 4 4 5 5
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

Sample Output

3

1

Code of 离散化部分

for(int i = 0; i < n; ++i) { // cin >> b[i] >> c[i]; scanf("%d%d", &b[i], &c[i]);///cin就超时,scanf就过... tem[tot++] = b[i]; tem[tot++] = c[i]; } sort(tem, tem + tot); int m = unique(tem, tem + tot) - tem; init(1, 1, m); for(int i = 0; i < n; ++i) { ///+ 1 是为了让区间标号从1开始 int tl = lower_bound(tem, tem + m, b[i]) - tem + 1; int tr = lower_bound(tem, tem + m, c[i]) - tem + 1; update(1, tl, tr); }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

m记的是不同的元素个数,也就是要“聚敛“到 1 ~ m这个区间上

lower_bound操作等效聚敛

Code of this problem

#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 100005; struct node { int L, R; int val; int mmax; } a[N << 2]; int b[N]; int c[N]; int tem[N << 1]; void down(int x)///对标号为x的区间的左右孩子区间更新val、mmax { if(a[x].val) { a[x << 1].val += a[x].val; a[x << 1].mmax += a[x].val; a[x << 1 | 1].val += a[x].val; a[x << 1 | 1].mmax += a[x].val; a[x].val = 0; } } void init(int num, int l, int r) { a[num].L = l; a[num].R = r; a[num].val = 0; a[num].mmax = 0; if(l == r) return ; int mid = (l + r) >> 1; init(num << 1, l, mid); init(num << 1 | 1, mid + 1, r); } void update(int num, int l, int r) { if(a[num].L == l && a[num].R == r) { a[num].val++; a[num].mmax++; return ; } if(a[num].L == a[num].R) return ; down(num); int mid = (a[num].L + a[num].R) >> 1; if(mid >= r) update(num << 1, l, r); else if(mid < l) update(num << 1 | 1, l, r); else { update(num << 1, l, mid); update(num << 1 | 1, mid + 1, r); } a[num].mmax = max(a[num << 1].mmax, a[num << 1 | 1].mmax); } int main() { int t; cin >> t; while(t--) { memset(b, 0, sizeof(b)); memset(c, 0, sizeof(c)); memset(tem, 0, sizeof(tem)); int n; cin >> n; int tot = 0; for(int i = 0; i < n; ++i) { // cin >> b[i] >> c[i]; scanf("%d%d", &b[i], &c[i]);///cin就超时,scanf就过... tem[tot++] = b[i]; tem[tot++] = c[i]; } sort(tem, tem + tot); int m = unique(tem, tem + tot) - tem; init(1, 1, m); for(int i = 0; i < n; ++i) { int tl = lower_bound(tem, tem + m, b[i]) - tem + 1; int tr = lower_bound(tem, tem + m, c[i]) - tem + 1; update(1, tl, tr); // cout << tl << ' ' << tr << '\n'; } cout << a[1].mmax << '\n'; } return 0; }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
Site by Baole Zhao | Powered by Hexo | theme PreciousJoy