POJ 3468 A Simple Problem with Integers
Desscription
n个数字初始化,执行两种操作:更新与查询
题目链接
树状数组
设三个不同的前缀和数组:
sum[i]:存原始数组前i项的和
d[i]:存从i到n的增量
di[i]: 存相应的d[i] * i
最终ans分两部分(原始前缀和+变化量前缀和):
①sum[end] - sum[begin - 1]
②(end + 1) query(d, end) - query(di, end) - {[(b - 1) + 1] query(d, b - 1) - query(di, b - 1)}
分析参考
Code
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
线段树(分清存和or存最值)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100005;
struct node
{
int L, R;
long long val, lazy;
} a[N << 2 | 1];
long long ans;
void down(int x)
{
a[x << 1].val += a[x].lazy * (a[x << 1].R - a[x << 1].L + 1);
a[x << 1].lazy += a[x].lazy;
a[x << 1 | 1].val += a[x].lazy * (a[x << 1 | 1].R - a[x << 1 | 1].L + 1);
a[x << 1 | 1].lazy += a[x].lazy;
a[x].lazy = 0;
}
void init(int num, int l, int r)
{
a[num].L = l;
a[num].R = r;
a[num].val = 0;
a[num].lazy = 0;
if(l == r)
return ;
int mid = (l + r) >> 1;
init(num << 1, l, mid);
init(num << 1 | 1, mid + 1, r);
}
void update(int num, int l, int r, int tot)
{
if(a[num].L > r || a[num].R < l)
return ;
if(a[num].L >= l && a[num].R <= r)
{
a[num].val += tot * (a[num].R - a[num].L + 1);
a[num].lazy += tot;
return ;
}
down(num);
update(num << 1, l, r, tot);
update(num << 1 | 1, l, r, tot);
a[num].val = a[num << 1].val + a[num << 1 | 1].val;
}
long long query(int num, int l, int r)
{
if(a[num].L == l && a[num].R == r)
return a[num].val;
if(a[num].L == a[num].R)
return 0;
down(num);
int mid = (a[num].L + a[num].R) >> 1;
if(mid >= r)
return ans + query(num << 1, l, r);
else if(mid < l)
return ans + query(num << 1 | 1, l, r);
else
return ans + query(num << 1, l, mid) + query(num << 1 | 1, mid + 1, r);
}
int main()
{
int n, q;
while(~scanf("%d%d", &n, &q))
{
init(1, 1, n);
int tem, d;
int b, c;
for(int i = 1; i <= n; ++i)
{
scanf("%d", &tem);
update(1, i, i, tem);
}
getchar();
char ch;
while(q--)
{
ch = getchar();
if(ch == 'Q')
{
ans = 0;
scanf("%d%d", &b, &c);
getchar();
cout << query(1, b, c) << '\n';
}
else
{
scanf("%d%d%d", &b, &c, &d);
getchar();
update(1, b, c, d);
}
}
}
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
线段树update函数优雅写法
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
线段树update函数流氓写法