矩阵快速幂与斐波那契不得不说的故事
矩阵快速幂
求矩阵A的k(较大)次幂(% 1e9 + 7)
Code(模板)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
ll n, mi;
struct mtx
{
ll m[105][105];
};
mtx mpy(mtx a, mtx b)
{
mtx ans;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
ans.m[i][j] = 0;
for(int k = 1; k <= n; ++k)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
return ans;
}
mtx fast_mod(mtx a, ll k)
{
mtx ans = a;
k--;
while(k)
{
if(k & 1)
ans = mpy(ans, a);
a = mpy(a, a);
k >>= 1;
}
return ans;
}
int main()
{
mtx a;
scanf("%lld%lld", &n, &mi);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
scanf("%lld", &a.m[i][j]);
if(mi == 0)
{
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
ans.m[i][j] = (i == j ? 1 : 0);
}
else
ans = fast_mod(a, mi);
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= n; ++j)
{
cout << ans.m[i][j];
if(j != n)
cout << ' ';
}
cout << '\n';
}
return 0;
}
SDNUOJ 1062 Fibonacci
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
ll n, mi;
struct mtx
{
ll m[10][10];
};
mtx mpy(mtx a, mtx b)
{
mtx ans;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
ans.m[i][j] = 0;
for(int k = 1; k <= n; ++k)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
return ans;
}
mtx fast_mod(mtx a, ll k)
{
mtx ans = a;
k--;
while(k)
{
if(k & 1)
ans = mpy(ans, a);
a = mpy(a, a);
k >>= 1;
}
return ans;
}
int main()
{
n = 2;
mtx a;
a.m[1][1] = 1, a.m[1][2] = 1, a.m[2][1] = 1, a.m[2][2] = 0;
scanf("%lld", &mi);
if(mi == 0)
cout << '0' << '\n';
else
{
a = fast_mod(a, mi);
cout << a.m[1][2] << '\n';
}
return 0;
}
对于此题
SDNUOJ 1085 爬楼梯再加强版
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
ll n, mi;
struct mtx
{
ll m[10][10];
};
mtx mpy(mtx a, mtx b)
{
mtx ans;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
ans.m[i][j] = 0;
for(int k = 1; k <= n; ++k)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
}
return ans;
}
mtx fast_mod(mtx a, ll k)
{
mtx ans = a;
k--;
while(k)
{
if(k & 1)
ans = mpy(ans, a);
a = mpy(a, a);
k >>= 1;
}
return ans;
}
int main()
{
n = 3;
mtx a, b;
a.m[1][1] = 1, a.m[1][2] = 1, a.m[1][3] = 1;
a.m[2][1] = 1, a.m[2][2] = 0, a.m[2][3] = 0;
a.m[3][1] = 0, a.m[3][2] = 1, a.m[3][3] = 0;
b.m[1][1] = 4, b.m[2][1] = 2, b.m[3][1] = 1;
scanf("%lld", &mi);
if(mi == 1)
cout << '1' << '\n';
else if(mi == 2)
cout << '2' << '\n';
else if(mi == 3)
cout << '4' << '\n';
else
{
a = fast_mod(a, mi - 3);
a = mpy(a, b);
cout << a.m[1][1] << '\n';
}
return 0;
}