POJ 3281 Dining(最大流最小割)
Description
农夫为他的 N (1 ≤ N ≤ 100) 牛准备了 F (1 ≤ F ≤ 100)种食物和 D (1 ≤ D ≤ 100) 种饮料。每头牛都有各自喜欢的食物和饮料,而每种食物或饮料只能分配给一头牛。最多能有多少头牛可以同时得到喜欢的食物和饮料?
Analyze
不可以二分图匹配,因为牛要匹配两种东西,求其跟每种东西的最大匹配,取交集也不是,取并集也不是,需建模用最大流解决
多源点、多汇点要建立超源点、超汇点
牛置于中间,左放食物右放饮料(或反过来)
连线权值为1,求最大流即答案
要注意:中间的牛要拆点
关于拆点
很明显,一头牛同时匹配了多种食物饮料,最大流是2,但答案是1(只满足了一头牛)
限流:限制流经每头牛的流量最大为1
Code
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cmath>
#include <cstdio>
#include <vector>
#include <bitset>
#include <string>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
#define eps 1e-8
#define PI acos(-1.0)
#define ll long long
using namespace std;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
#define Close ios::sync_with_stdio(false);
void Debug(char * s)
{
cout << "------------- " << s << " -------------" << '\n';
}
const int N = 1005;
int n;///网络流中最重要的是建模构图,其中全局变量总点数n要计算清楚
int maxflow, deep[N];
struct edge
{
int from, to, w, pre;
} a[N * N];
queue<int> q;
int cnt = -1;
int head[N], cur[N];
void add(int from, int to, int w)
{
a[++cnt].to = to;
a[cnt].from = from;
a[cnt].pre = head[from];
a[cnt].w = w;
head[from] = cnt;
}
bool bfs(int s, int t)
{
memset(deep, INF, sizeof(deep));
while(!q.empty())
q.pop();
for(int i = 0; i <= n; ++i)
cur[i] = head[i];
deep[s] = 0;
q.push(s);
while(!q.empty())
{
int first = q.front();
q.pop();
for(int i = head[first]; ~i; i = a[i].pre)
{
if(deep[ a[i].to ] == INF && a[i].w)///w在此处用来做标记 是正图还是返图
{
deep[ a[i].to ] = deep[first] + 1;
q.push(a[i].to);
}
}
}
if(deep[t] < INF)
return 1;
return 0;
}
int dfs(int now, int t, int limit)
{
if(!limit || now == t)
return limit;
int flow = 0, f;
for(int i = cur[now]; ~i; i = a[i].pre)
{
cur[now] = i;
if(deep[ a[i].to ] == deep[now] + 1)
if(f = dfs(a[i].to, t, min(limit, a[i].w)))
{
flow += f;
limit -= f;
a[i].w -= f;
a[i ^ 1].w += f;
if(!limit)
break;
}
}
return flow;
}
///bfs分层,dfs增广、处理残余网络、反向边
void Dinic(int s, int t)
{
int temp;
while(bfs(s, t))
{
while((temp = dfs(s, t, INF)) > 0)
maxflow += temp;
}
}
int main()
{
memset(head, -1, sizeof(head));
int nn, ff, dd;
scanf("%d%d%d", &nn, &ff, &dd);
n = 2 * nn + ff + dd + 2;
for(int i = 1; i <= ff; ++i)
{
add(0, i, 1);
add(i, 0, 0);
}
for(int i = 1; i <= dd; ++i)
{
add(i + 2 * nn + ff, 1 + dd + 2 * nn + ff, 1);
add(1 + dd + 2 * nn + ff, i + 2 * nn + ff, 0);
}
int num_f = 0, num_d = 0, idx = 0;
for(int i = 1; i <= nn; ++i)
{
scanf("%d%d", &num_f, &num_d);
for(int j = 1; j <= num_f; ++j)
{
scanf("%d", &idx);
add(idx, i + ff, 1);
add(i + ff, idx, 0);
}
for(int j = 1; j <= num_d; ++j)
{
scanf("%d", &idx);
add(i + nn + ff, idx + 2 * nn + ff, 1);
add(idx + 2 * nn + ff, i + nn + ff, 0);
}
add(i + ff, i + nn + ff, 1);
add(i + nn + ff, i + ff, 0);
}
Dinic(0, 1 + dd + 2 * nn + ff);
cout << maxflow << '\n';
return 0;
}
n(总点数)的计算出错了
添边时超级源点0写成了1
i为序号写成了idx(idx在其他地方做过序号)
所以要分清“同类”